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Experimental evaluation of acceleration correlations for locally isotropic turbulence
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~Received 3 September 1996!

The two-point correlation of the fluid-particle acceleration is the sum of the pressure gradient and viscous
force correlations. The pressure-gradient correlation is related to the fourth-order velocity structure function.
The acceleration correlation caused by viscous forces is formulated in terms of the third-order velocity struc-
ture function. Velocity data from grid-generated turbulence in a wind tunnel are used to evaluate these quan-
tities. The evaluated relationships require only the Navier-Stokes equation, incompressibility, local homoge-
neity, and local isotropy. The relationships are valid for any Reynolds number. For the moderate Reynolds
number of the wind-tunnel turbulence, the acceleration correlation is roughly three times larger than if it is
evaluated on the basis of the assumption that velocities at several points are joint Gaussian random variables.
The correlation of components of acceleration parallel to the separation vector of the two points is negative
near its minimum at spacings close to 17 times the microscale. Its value near this minimum implies that fluid
particles at those spacings have typical relative accelerations of one-half that of gravity in the directions toward
and away from one another. For large Reynolds numbers, the two-point correlation of acceleration is domi-
nated by the two-point correlation of the pressure gradient. The data verify that the acceleration correlation
caused by viscous forces is much smaller than that caused by the pressure gradient.@S1063-651X~97!12402-3#

PACS number~s!: 47.10.1g, 47.27.Gs, 47.27.Jv, 47.27.Ak
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I. INTRODUCTION

For brevity, the Navier-Stokes equation, incompressi
ity, local homogeneity, and local isotropy are referred to
the postulates. On the basis of these postulates alone, fo
las are given for the two-point correlation of fluid-partic
acceleration in terms of velocity structure functions. The
formulas are evaluated using data from grid-generated tu
lence in a wind tunnel. Conditions for the accuracy of loc
isotropy have recently been systematically studied by me
of experiment@1# and numerical simulation@2#.

The time derivative of the velocityui following the mo-
tion of a fluid particle is the Lagrangian acceleration deno
byDui /Dt, wheret is time and subscripti denotes the com
ponent of velocity. Fluid-particle acceleration is anoth
name for Lagrangian acceleration. The Navier-Stokes eq
tion relates the Lagrangian acceleration to the accelerat
caused by the pressure gradient and viscous forces@3,4#,

Dui
Dt

5] tui1uk]kui52
1

r
P1n¹2ui , ~1!

where] t and] i denote partial differentiation with respect
time and spatial position componentxi , respectively, and
¹25]k]k is the Laplacian operator. Repeated Roman indi
imply summation. From Eq.~1!, it follows that the two-point
spatial correlation of Lagrangian acceleration is given
@3,4#

K SDuiDt D SDujDt D 8L 5
1

r2
^] iP] j8P8&1n2^¹2ui¹82uj8&,

~2!
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where primed and unprimed quantities are evaluated
pointsxW8 andxW , respectively. Angle brackets denote an a
erage. Pressure is denoted byP, density byr, and the kine-
matic viscosity byn. The cross term involving the correla
tion of pressure gradient with velocity vanishes on the ba
of local isotropy@3,4#, and is therefore omitted from Eq.~2!.
The pressure-gradient correlation in Eq.~2! ~the first term on
the right-hand side! has zero curl, and the viscous accele
tion correlation in Eq.~2! has zero divergence. Thus, the
two terms are the potential and solenoidal contributions
the acceleration correlation.

For locally homogeneous turbulence, the statistical t
sors depend on the separation vectorrW5xW2xW8, and for lo-
cally isotropic turbulence, the tensors’ associated scalar fu
tions depend only on the spacingr5urWu. The preferred
coordinate system is the Cartesian coordinate system ha
its 1-axis aligned along the separation vectorrW. Transverse
components are denoted by Greek subscripts such asa, b,
andg ; that is,a, b, andg are 2 and 3, and they can be equ
unless otherwise specified. No summation is implied by
peated Greek subscripts. For our purposes, the Reyn
number is defined by Re5 l T^u1

2&1/2/n, where Taylor’s scale
is defined byl T5(^u1

2&)/@^(]1u1)
2&#1/2. The traditional no-

tationl for Taylor’s scale and its use as a subscript on Re
avoided because Greek subscripts have another mea
here.

The correlation of fluid-particle acceleration has be
studied by Batchelor@5# and Obukhov and Yaglom@3,6#.
They showed that for large Reynolds numbers the contri
tion of the viscous acceleration is very small compared w
that of the pressure gradient. Batchelor@5# gave the quanti-
tative estimate that the correlation of the viscous term c
tributes only 2% of the acceleration correlation at zero sp
1600 © 1997 The American Physical Society
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55 1601EXPERIMENTAL EVALUATION OF ACCELERATION . . .
ing and for large Re~a Reynolds number of 200 is large fo
his purposes; cf. Fig. 3 of Ref.@5#!; his estimate was base
on the assumption that velocities at two points have the j
Gaussian probability distribution. Deviations of pressure s
tistics from the formulas based on the joint Gaussian
sumption have been obtained from numerical simulation
turbulence for low Re@7,8#. On the basis of the postulate
~but without use of the joint Gaussian assumption!, the pres-
sure structure function and pressure-gradient correlation h
recently been related to the fourth-order velocity struct
function @9#. It was thereby shown that the estimates of t
pressure-gradient correlation based on the joint Gaussian
sumption were underestimates, and that the underestim
worsens with increasing Re such that for values of Re ty
cally observed in the atmospheric surface layer~Re in the
range of several thousands!, the underestimate was about
factor of 4 @9#. For the data shown here, Re5208, and the
underestimate from the joint Gaussian assumption is sh
to be about a factor of 3. Obukhov and Yaglom@3# showed
that for increasingr the viscous acceleration correlation b
comes progressively smaller relative to the pressure-grad
acceleration correlation. Therefore, the viscous accelera
correlation is only about one-third~for Re5208! of Batch-
elor’s @5# estimate of 2% of the total acceleration correlati
at r50 and becomes progressively smaller, relative to
total, with increasingr and Re.

Referring to Eq.~1!, Monin and Yaglom@4# named the
term ] tui the ‘‘local acceleration’’ and nameduk]kui the
‘‘inertial acceleration.’’ Lin@10# studied the auto- and cross
covariances of all four acceleration terms in Eq.~1!. He
found that the mean-squared pressure gradient was sm
than the mean-squared inertial acceleration by a facto
order Re21 and that the mean-squared viscous accelera
was even smaller. Therefore, the local and inertial accel
tions are much larger than the right-hand side of Eq.~1!; they
nearly cancel each other, and they cancel more complete
Re increases. The total nonlinear term in the Navier-Sto
equation, i.e., the sum of inertial and pressure-gradient ac
erations, is therefore dominated by the inertial accelerat
The total nonlinear term has been studied by means of
merical simulation of turbulence@11#, and its deviations
from the predictions of the joint Gaussian assumption w
given in Ref.@11#.

Münch and Wheelon@12# used the Navier-Stokes equ
tion to study the Eulerian velocity correlation time. In s
doing, they demonstrated that advection of small-scale st
ture by the large-scale motion dominates the mean-squ
local acceleration. This effect has more recently been ca
‘‘random sweeping.’’ Tennekes@13# used random sweepin
to obtain that the mean-squared Lagrangian acceleratio
Re21 times the mean-squared local acceleration; this
equivalent to Lin’s@10# result. Tennekes@13# expressed the
random sweeping hypothesis in his first equation, which
] tui1uk]kui50; that is, the right-hand side of Eq.~1! is
neglected. Thus, the pressure-gradient and viscous acce
tions produce deviations from the random sweeping hypo
esis. The importance of pressure-gradient and viscous a
erations to Taylor’s hypothesis of frozen flow has be
assessed in Refs.@10# and @14#.

The pressure structure function is needed in subseq
sections; it is defined by
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DP~rW ![
1

r2
^~P2P8!2&. ~3!

The following second-, third-, and fourth-order veloci
structure functions are also needed:

Di j ~rW ![^~ui2ui8!~uj2uj8!&, ~4a!

Di jk~rW ![^~ui2ui8!~uj2uj8!~uk2uk8!&, ~4b!

Di jkl ~rW ![^~ui2ui8!~uj2uj8!~uk2uk8!~ul2ul8!&. ~4c!

These tensors are symmetric under interchange of every
of indices. Assuming local isotropy, these tensors@Eqs.
~4a!–~4c!# obey the specific ‘‘isotropic’’ formulas~13.69!,
~13.80!, and~13.81! of Monin and Yaglom@4#. For instance,
a general locally isotropic second-order tensorTi j (rW) is
given by @4#

Ti j ~rW !5@T11~r !2Tgg~r !#
r i r j
r 2

1Tgg~r !d i j , ~5!

whereT11(r ) andTgg(r ) are the longitudinal and transvers
components of the tensor, respectively, andd i j is the Kro-
necker delta. For locally isotropic turbulence, the Lagrang
acceleration correlation and its two contributions in Eq.~2!
obey Eq.~5!, as doesDi j (rW). Also,Di jk(rW) can be expressed
in terms of its nonzero componentsD111(r ) andD1gg(r ),
which are related by the incompressibility condition@4#

D1gg~r !5
1

6
@rD 111~r !#~1!. ~6!

The superscript in parentheses indicates the order of dif
entiation with respect tor . Also,Di jkl (rW) can be expressed in
terms of its nonzero componentsD1111(r ), Dbbbb(r ), and
D11gg(r ), and the other nonzero components,Dkkgg(r ) with
kÞg, are related toDbbbb(r ) by the isotropy condition
3Dkkgg(r )5Dbbbb(r ) @4#.

II. ACCELERATION CORRELATION
BY THE PRESSURE GRADIENT

The pressure-gradient contribution to the Lagrangian
celeration correlation in Eq.~2! can be expressed as@3#

Ai j ~rW ![
1

r2
^] iP] j8P8&5

1

2
DP~r ! u i j . ~7!

The subscript vertical bar followed by indices indicates d
ferentiation with respect to the components ofrW. On the basis
of the postulates, the relationship betweenDP(r ) and
Di jkl (rW) gives @9#
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Agg~r !5
1

2r
DP

~1!~r !

52
1

6r
D1111

~1! ~r !2
2

3r 2
@D1111~r !23D11aa~r !#

1
4

3Er
`

y23@D1111~r !1Dbbbb~r !

26D11aa~r !#dy, ~8a!

A11~r !5
1

2
DP

~2!~r !

52
1

6
D1111

~2! ~r !2
2

3r
@D1111~r !23D11aa~r !#~1!

2
2

3r 2
@D1111~r !12Dbbbb~r !29D11aa~r !#

1
4

3Er
`

y23@D1111~y!1Dbbbb~y!

26D11aa~y!#dy. ~8b!

The appearance of subscriptsa, b, andg in Eq. ~8a! empha-
sizes that use of 2 or 3 for any of these subscripts is arbitr
For r50, both components arex/3, wherex is the mean-
squared pressure gradient given by@9#

x[
1

r2
^u] iPu2&54E

0

`

r23@D1111~r !1Dbbbb~r !

26D11gg~r !#dr. ~9!

Of course,Ai j (rW) has the isotropic formula~5!, and is
therefore described in terms of two scalar functions that
taken to beA11(r ) andAgg(r ). Because the curl of the gra
dient is zero, the curl ofAi j (rW) vanishes~operating on either
index!; consequently, the two scalar functions are related
@Eq. ~12.70! of Ref. @4##

A11~r !5Agg~r !1rAgg
~1!~r !. ~10!

Thus,Ai j (rW) is described by a single scalar function. Equ
tions ~8a! and ~8b! satisfy Eq.~10!.

The wind-tunnel grid-turbulence velocity data are d
scribed in the Appendix. The fourth-order structure functio
were calculated from the data and substituted into Eqs.~8a!
and~8b!. The resulting acceleration correlations are shown
Fig. 1. The single measured transverse velocity compone
assigned the subscript 2. The data do not have suffic
spatial resolution to determinex from Eq. ~9!. In fact, the
values shown in Fig. 1 atr<2 mm should be interpreted wit
caution because of the limited spatial resolution~see the Ap-
pendix!. The values atr50 are therefore not graphed in Fig
1. For r50, it is easiest to evaluate Eq.~9! rather than Eqs.
~8a! and ~8b! from which x/3 is the value ofA11(0) and
Agg(0).

The monotonic decrease ofA22(r ) in Fig. 1 is expected
@9# on the basis of the monotonic increase ofDP

(1)(r ). Equa-
tion ~10! requires thatA11(r ) have both positive and negativ
y.

re

y

-

-
s

n
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values and therefore have at least 2 extrema@15#. The ex-
perimental evaluation shown in Fig. 1 demonstrates th
A11(r ) does indeed have a minimum where it is negativ
That is, the acceleration components along the separa
vector typically have opposite signs for thoser for which
A11(r ) is negative. Consider the collision of oppositely d
rected jets. The acceleration is away from the stall po
along the direction of collision and also away from the sta
point in the directions transverse to the direction of collisio
Such oppositely directed accelerations make it clear th
negative values ofA11(r ) are expected. In Fig. 1, the mini-
mum value ofA11(r ) is about225 m2 s24, the square root of
the magnitude of which gives relative acceleration of abo
on-half that of the acceleration of gravity,g. The minimum
occurs at spacings of 5–6 mm and corresponds tor /h about
16–19, whereh is Kolmogorov’s microscale. The slight os
cillations inA11(r ) at the largerr values shown in Fig. 1 are
caused by the limited number of data averaged combin
with the cancellations of some of the terms in Eq.~8b!. Thus,
these oscillations are an artifact that would be removed
much more data were averaged.

In the inertial range, bothA11(r ) andA22(r ) are positive
and have approximate22/3 power laws@3,9#. Thus, for an
inertial range,A11(r ) must cross zero to become positive a
some value ofr @9#. The data do not have an inertial rang
~see the Appendix!, so we do not require another zero cros
ing of A11(r ) to appear at larger in Fig. 1.

From the assumption of joint Gaussian velocities, th
pressure-gradient contribution to acceleration correlation
@16#

Agg
JG~r !5E

r

`

y21@D11
~1!~y!#2dy, ~11a!

A11
JG~r !5Agg

JG~r !2@D11
~1!~r !#2. ~11b!

FIG. 1. The acceleration correlation caused by the pressure g
dient.A11(r ) andA22(r ) are the solid and dashed curves, respe
tively. No value is graphed atr50. The Kolmogorov microscale
was 0.31 mm for this and subsequent figures.
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55 1603EXPERIMENTAL EVALUATION OF ACCELERATION . . .
The superscript JG indicates that the formula requires
assumption of joint Gaussian velocities in addition to requ
ing the postulates. Equations~11a! and~11b! are much sim-
pler than the corresponding formulas in Ref.@3# because in-
tegration by parts was not used to simplify the results of R
@3#. For comparison with the results in Fig. 1, Eqs.~11a! and
~11b! are evaluated using the data, and the press
gradient’s acceleration correlation is shown in Fig. 2. Res
in Fig. 2 appear to be similar to those in Fig. 1. Howev
note that the scale of the ordinate in Fig. 2 is about one-th
that of Fig. 1. That is, the joint Gaussian velocities assum
tion underestimates the acceleration correlation for the s
ject data by about a factor of 3. Such an underestimate
anticipated @9#. The minimum ofA11

JG(r ) in Fig. 2 is at
slightly greaterr than in Fig. 1, and the minimum value o
A11
JG(r ) is almost one-fifth that ofA11(r ).
One can express the acceleration correlations in term

spectra. Substituting the relationships~8a! and ~8b!, i.e.,
Agg(r )5(1/2r )DP

(1)(r ) andA11(r )5(1/2)DP
(2)(r ), into Eqs.

~15! and~44! of Ref. @9#, one immediately relates the Fourie
transforms ofAgg(r ) andA11(r ) to the pressure spectrum
The pressure spectrum is, in turn, related to the fourth-o
velocity structure function@cf. Eq. ~16! of Ref. @9##.

III. ACCELERATION BY THE VISCOUS FORCE

The formula for the viscous acceleration correlation
@3,4#

Vi j ~rW ![n2^¹2ui¹82uj8&52
n2

2
Di j ~rW ! unnkk. ~12!

The repeated Roman subscripts following the vertical
mean that the Laplacian operator with respect torW operates
twice on the right-hand side of Eq.~12!. Of course,Vi j (rW)
obeys the isotropic formula~5!, as doesDi j (rW). In addition,

FIG. 2. The acceleration correlation caused by the pressure
dient for the assumption of joint Gaussian velocities.A11

JG(r ) and
A22
JG(r ) are the solid and dashed curves, respectively. No valu

graphed atr50.
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the divergence of Eq.~12!, operating on either index, van
ishes because of incompressibility such thatDi j (rW) u i
5Di j (rW) u j50, and therefore,Vi j (rW) u i5Vi j (rW) u j50. That is,
Di j (rW) andVi j (rW) are both solenoidal such that their comp
nents are related by@4#

Vgg~r !5V11~r !1
r

2
V11

~1!~r !; ~13!

the analogous relationship betweenD11(r ) and Dgg(r ) is
well known @4#. Now, Eq.~13! requires thatVgg(r ) has both
positive and negative values and therefore has at least 2
trema at finiter @15#.

On the basis of the postulates, Obukhov and Yaglom@3#
used Eq.~12! to derive the viscous acceleration correlation
terms ofD11(r ). Unfortunately, substituting data into the
formula is not useful for two reasons. First, that formu
requires derivatives of first through fifth order ofD11(r ) with
respect tor , or derivatives of up to fourth order if both
D22(r ) andD11(r ) appear in the formula. Second, their r
sult vanishes when the asymptotic viscous-range form
D11(r )}r

2, is substituted into their formula; this implie
great cancellation of terms in the formula forr within the
viscous range, whereas the viscous range is the most sig
cant range for viscous acceleration correlation. Indeed,
second property is the reason that fourth-order deriva
moments appear in the formulas for the mean-squared
cous acceleration given by Batchelor@5# and Yaglom@6#.

Therefore, another formula is sought that does not h
these properties. Monin@17# was the first to obtain, on the
basis of the postulates, that

Di jk~rW ! uk1
4

3
ed i j52nDi j ~rW ! ukk ~14!

@cf. Eq. ~22.15! in Ref. @4##, from which follows Kolmogor-
ov’s equation@4,17,18#

D111~r !52
4

5
er16nD11

~1!~r !, ~15!

wheree is the rate of dissipation of turbulent energy per u
mass of fluid. Applying the Laplacian operator to Eq.~14!
gives

Di jk~rW ! uknn52nDi j ~rW ! unnkk. ~16!

Substituting Eq.~16! into Eq. ~12! gives

Vi j ~rW !52
n

4
Di jk~rW ! uknn . ~17!

The longitudinal and transverse components of the visc
acceleration correlation are obtained by substitution of
isotropic formula forDi jk(rW) and use of incompressibility
@Eq. ~6!#, as follows:

Vgg~r !5
n

2 F 1r 3D111~r !1
2

r 3
D1bb~r !

2
5

r 2
D1bb

~1! ~r !2
1

r
D1bb

~2! ~r !G , ~18a!

ra-
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V11~r !5
n

2 F2
1

r 3
D111~r !1

2

r 3
D1bb~r !1

1

r 2
D1bb

~1! ~r !

2
3

r
D1bb

~2! ~r !2
1

2
D1bb

~3! ~r !G . ~18b!

Of course, Eq.~6! can be used to expressVgg(r ) and
V11(r ) in terms of onlyD111(r ); a one-order-higher deriva
tive would then appear in these formulas, and more can
lation among the terms would occur. Equations~18a! and
~18b! have been checked by determining that they agree w
the expression forVii (0) given by Yaglom@6# and that they
produce the same inertial-range formula for viscous accel
tion correlation as can be obtained from the formulas in R
@3#. Also, Eqs.~18a! and ~18b! obey the incompressibility
condition @Eq. ~13!#.

From Eqs.~18a! and ~18b!, the asymptotic viscous-rang
formulas are

V11~0!5Vgg~0!5235n^~]1u1!
3&/6, ~19!

which is the same as obtained by Yaglom@6#, who used a
different method.

Derivation of the inertial-range formulas from Eqs.~18a!
and ~18b! is given next. If the isotropic formula forDi jk(rW)
and Kolmogorov’s@18# inertial-range law, i.e.,D111(r )5
24er /5 andD1gg(r )524er /15, are substituted on the lef
hand side of Eq.~16!, then the left-hand side of Eq.~16!
vanishes. The inertial-range law is thus the solution to
corresponding homogeneous equation@i.e., replacing the
right-hand side of Eq.~16! with zero#. Therefore, the correc
tion to the inertial-range formula forD111(r ) can be found by
substituting the inertial-range formula forDi j (rW) on the
right-hand side of Eq.~16! and obtaining the particular solu
tion of Eq. ~16!. It is simpler to substitute the inertial-rang
formulaD11(r )5Ce2/3r 2/3 into Kolmogorov’s equation, Eq
~15!, and solve forD111(r ) to obtain

D111~r !52 4
5 er14nCe2/3r21/352 4

5 er @125C~r /h!24/3#,
~20a!

D1gg~r !52 4
15er1 4

9nCe2/3r21/352 4
15er @12 5

3C~r /h!4/3#,
~20b!

where Eq.~20b! follows from Eq. ~20a! on the basis of in-
compressibility@Eq. ~6!#. Here,h5(n3/e)1/4 is Kolmogor-
ov’s microscale, andC is Kolmogorov’s constant, which ha
the valueC.2 @19#. The result@Eqs.~20a! and~20b!# gives
the correction to Kolmogorov’s inertial-range law caused
viscous acceleration. The use ofC52 in Eqs. ~20a! and
~20b! shows that the correction term is small compared to
asymptotic power law for thoser /h for which D11(r )
5Ce2/3r 2/3 is accurate. Substituting Eqs.~20a! and~20b! into
Eqs.~18a! and~18b! gives the same result as can be obtain
by substituting the inertial-range formula forD11(r ) into the
formulas forV11(r ) andVgg(r ) given in Ref.@3#; this fact
validates Eqs.~18a! and ~18b! and the correction terms in
Eqs.~20a! and~20b! because only the correction terms co
tribute toV11(r ) andVgg(r ). The inertial-range asymptoti
formulas arise only from the correction terms in Eqs.~20a!
and ~20b! and are
l-

th

a-
f.

e

y

e

d

V11~r !52.72n2Ce2/3r210/3, ~21a!

Vgg~r !521.84n2Ce2/3r210/3. ~21b!

The 210/3 power law has been given by Obukhov a
Yaglom @3#. Since only the correction terms in Eqs.~20a!
and~20b! contribute in Eqs.~21a! and~21b!, it follows that if
one were to attempt to use data to calculateV11(r ) and
Vgg(r ) in the inertial range, then one should use their re
tionship toD11(r ) given in Ref. @3# rather than use Eqs
~18a! and ~18b!. On the other hand, Eqs.~18a! and ~18b!
should be used for the viscous range for aforementioned
sons.

The third-order structure functions were calculated fro
the data and substituted into Eqs.~18a! and~18b!. The result
is shown in Fig. 3. The negative values ofV22(r ),which are
required on the basis of Eq.~13! @15#, are evident in Fig. 3.
Note that the scale of the abscissa in Fig. 3 is less t
one-third that of Figs. 1 and 2, and that the scale of
ordinate in Fig. 3 is only about one-hundredth that of Fig.
The evaluation shown in Fig. 3 clearly suffers from limite
spatial resolution of the data to a greater extent than
pressure-gradient correlation in Fig. 1. Evaluation of Eq.~19!
gives 2.7 m2 s24 ~see the Appendix!, which is greater than
the values graphed in Fig. 3 at the minimum spacing o
mm especially forA22(r ). This indicates that the derivative
in Eqs.~18a! and~18b! are inaccurate at the smallest spaci
in Fig. 3 because of the limited spatial resolution of the d
and the coarseness of the sampling rate, especially when
necessary to calculate the third-order derivative, as in
~18b!. The viscous acceleration correlation was also cal
lated fromD111(r ) alone; that is, by calculating the right
hand side of Eq.~6! and using it in place ofD1bb(r ) every-
where in Eqs.~18a! and~18b!. The result differed from Fig.
3 in only minor respects; notably, there were more osci
tions at the largerr caused by the higher order of differen
tiation.

FIG. 3. The acceleration correlation caused by the viscous fo
V11(r ) andV22(r ) are the solid and dashed curves, respectively.
value is graphed atr50.
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Fourier transformation of Eqs.~18a! and ~18b! followed
by integration by parts and optional use of Eq.~6!, can be
used to express the Fourier transforms ofVgg(r ) and
V11(r ) in terms of Fourier transforms related toD111(r ) and
D1bb(r ). Alternatively, the Fourier transforms of the rel
tionships ofVgg(r ) andV11(r ) toD11(r ) as given in Ref.@3#
can, after integration by parts, express the Fourier transfo
of Vgg(r ) and V11(r ) in terms of Fourier transforms tha
involve D11(r ).

IV. DISCUSSION

The contributions of the pressure gradient and the visc
force to the fluid-particle acceleration correlation were eva
ated using velocity data. It appears that spatial resolution
the order of the Kolmogorov microscale is needed to be
obtain the acceleration caused by the viscous force. Ach
ing such fine spatial resolution requires considerable exp
mental effort. About half that resolution is needed for t
pressure-gradient correlation. Data that is sampled m
finely than the spatial resolution would be useful for imp
menting the derivatives. Much more data than that used h
would improve the statistical reliability and thereby impro
evaluation of the correlations. A motivation for this report
to encourage the design of experiments capable of evalua
the acceleration correlation.

The asymptotic formulas forVi j (rW) in the viscous and
inertial ranges are given in Eqs.~19!, ~20a!, and ~20b! and
for Ai j (rW) in Ref. @9#. The data employed cannot be used
verify either asymptote. For simplicity, the inertial-rang
power laws are given without their modifications attributab
to intermittency, but the modification is obvious.

All results are obtained solely on the basis of the pos
lates, with the exception, of course, of the inertial-range
ymptotic formulas@Eqs. ~20b!, ~21a!, and ~21b!# and the
comparison with results from the joint Gaussian assumpt
Results based solely on the postulates are valid for arbit
Re. In practice, as Re becomes small, the turbulence m
become homogeneous and isotropic in order that local ho
geneity and local isotropy remain accurate. Numerical sim
lation of turbulence can be used to calculate both sides
Eqs.~8a! and ~8b! and Eqs.~18a! and ~18b!. As such, these
equations and related equations in Ref.@9# can be used as
measures of how well the simulation obeys the postula
Equations~8a! and~8b! and related equations in Ref.@9# do
not depend on the viscosity term; thus, these equations
satisfied when hyperviscosity is used in a numerical simu
tion, as in Ref.@2#.

Figure 1 shows that the transverse component cause
the pressure gradient, i.e.,Agg(r ), is monotonically decreas
ing, as expected, and that the longitudinal component,
A11(r ), has a minimum where it is negative. The latter im
plies that accelerations at the two points are, in the ro
mean-squared sense, toward and away from each other w
projected on the separation vectorrW. The maximum contri-
butions to the acceleration correlation are atr50, where, for
the data considered, the pressure gradient contributes a v
in excess of 175 m2 s24 ~thus, the root-mean-squared acc
eration exceeds 1.4 g! and the viscous force contributes 2
m2 s24. At all r , the viscous-force contribution is small com
pared with that of the pressure gradient, and it is ev
s
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smaller, relative to the pressure-gradient contribution,
even greater Re. The assumption of joint Gaussian veloc
causes underestimation of the pressure-gradient correla
by about a factor of 3 for the data considered, and the
derestimate worsens with increasing Re.
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APPENDIX

Velocity data obtained from grid-generated turbulence
a wind tunnel were used to evaluate Eqs.~8a!, ~8b!, ~11a!,
~11b!, ~18a!, ~18b!, and~19!. The data are described in Re
@20#. An X-configuration hot-wire anemometer measured
streamwise velocity component, as well as one cross-str
velocity component. These components are assigned the
scripts 1 and 2, respectively, i.e.,b5g52. The grid spacing
was 19 cm. The measurements were performed 4.7 m f
the grid, at which position the mean shear was zero. T
mean velocity was 10.1 m s21, the Kolmogorov microscaleh
was 0.31 mm. Taylor’s scale was 8.5 mm, the integral sc
was 10.8 cm@20#, and Re5208. The hot wires were 1.2 mm
long, and the signals were filtered at 5 kHz, so the spa
scale over which the velocity was averaged was about 1 m
The data were sampled at 10 kHz, so using Taylor’s hypo
esis with the mean velocity of 10.1 m s21, the samples were
spaced 1 mm in the streamwise direction. Reduced cred
ity must be given to the statistics at spacings less than a
2 mm because of the spatial averaging.

The statistical reliability of the structure functions wa
determined by calculating joint probability distributions an
graphing the integrands that produce the statistics by inte
tion of a function multiplying the joint probability distribu
tion. For instance, the integrand forD1122(r ) at a givenr is
(u12u18)

2(u22u28)
2 times the joint probability distribution

of (u12u18) and (u22u28). There is no systematic undere
timation of any of the statistics.

The velocity structure functions were corrected for ina
curacy of Taylor’s frozen-flow hypothesis using the alg
rithms in Ref.@21#. Those algorithms include corrections fo
second-, third-, and fourth-order structure functions. Unn
ticeable changes in the figures results from using correc
versus uncorrected structure functions.

The velocity covariances werê(u1)
2&50.135 m2 s22,

^(u2)
2&50.119 m2 s22, and ^u1u2&520.0036 m2 s22,

which show that the turbulence was nearly isotropic. T
numerators of the ratiosD12(r )/D11(r ), D1112(r )/D1111(r ),
and D1222(r )/D1111(r ) should be zero in isotropic turbu
lence. These ratios were within 2% of zero forr,10 cm with
the exception of a rapid decrease forr,0.3 cm, presumably
caused by spatial averaging and the separation of the
wires in theX-wire probe.

The power spectra of both velocity components ha
power laws extending over about a decade in wave num
@20#, but the power-law exponents are noticeably shallow
than25/3; they are about25/310.19. This deviation from
25/3 is expected for the Reynolds number of 208 in co
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parison with slopes of velocity spectra collected in the fi
figure of Ref.@22#, and in comparison with the dissipatio
range bump observed in velocity spectra at higher Reyn
numbers@1,23–25# and predicted theoretically@26,27#.

A finite value must be chosen for the upper limit of th
integral in Eq.~8a!. The integrand in Eq.~8a!, as evaluated
using the data, decreases in a nearly power-law manne
more than 3 decreases fromr55 mm to 9 cm; beyond 10 cm
the integrand becomes statistically unreliable. The up
limit was chosen to be 10 cm. Because of the rapid decre
-

ys
s

by

er
se

of the integrand with increasingr , the integral is insensitive
to the choice of the upper limit. Similar considerations est
lish 20 cm as the appropriate upper limit for use in Eqs.~11a!
and ~11b!.

For r51 mm, i.e., the minimum spacing, the rat
D111(r )/@D11(r )#

3/2 was20.4, which agrees with the valu
of velocity-derivative skewness given for the same data
Ref. @20#. This value was used with Eq.~19! and the mea-
sured energy dissipation rate to obtainV11(0)5Vgg(0)
52.7 m2 s24.
n
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