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Experimental evaluation of acceleration correlations for locally isotropic turbulence
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The two-point correlation of the fluid-particle acceleration is the sum of the pressure gradient and viscous
force correlations. The pressure-gradient correlation is related to the fourth-order velocity structure function.
The acceleration correlation caused by viscous forces is formulated in terms of the third-order velocity struc-
ture function. Velocity data from grid-generated turbulence in a wind tunnel are used to evaluate these quan-
tities. The evaluated relationships require only the Navier-Stokes equation, incompressibility, local homoge-
neity, and local isotropy. The relationships are valid for any Reynolds number. For the moderate Reynolds
number of the wind-tunnel turbulence, the acceleration correlation is roughly three times larger than if it is
evaluated on the basis of the assumption that velocities at several points are joint Gaussian random variables.
The correlation of components of acceleration parallel to the separation vector of the two points is negative
near its minimum at spacings close to 17 times the microscale. Its value near this minimum implies that fluid
particles at those spacings have typical relative accelerations of one-half that of gravity in the directions toward
and away from one another. For large Reynolds numbers, the two-point correlation of acceleration is domi-
nated by the two-point correlation of the pressure gradient. The data verify that the acceleration correlation
caused by viscous forces is much smaller than that caused by the pressure diadi@g8-651X97)12402-3

PACS numbes): 47.10+g, 47.27.Gs, 47.27.Jv, 47.27.Ak

I. INTRODUCTION where primed and unprimed quantities are evaluated at
pointsx’ andXx, respectively. Angle brackets denote an av-
For brevity, the Navier-Stokes equation, incompressibil-erage. Pressure is denoted Bydensity byp, and the kine-
ity, local homogeneity, and local isotropy are referred to agnatic viscosity byr. The cross term involving the correla-
the postulates. On the basis of these postulates alone, formtion of pressure gradient with velocity vanishes on the basis
las are given for the two-point correlation of fluid-particle Of local isotropy[3,4], and is therefore omitted from E®).
acceleration in terms of velocity structure functions. Thesel Ne pressure-gradient correlation in ER) (the first term on
formulas are evaluated using data from grid-generated turbJl'® right-hand sidehas zero curl, and the viscous accelera-
lence in a wind tunnel. Conditions for the accuracy of localliO" correlation Ihn Eq(2) hals zedro d;verggnlce. Th_lés,_these
isotropy have recently been systematically studied by meary gatg(r:rglzgﬁ)rtm ((:eorprce)tlgtr;gﬁ and solenoidal contributions to
of ?')r(\%etrilrrr?:ndt[elr]ivir:ic\j/ ;%?;récigfc;gg: ?tflc())l%\]/;/ing the mo- For locally homogeneous turbulence, the statistical ten-

. : e ; . ors depend on the separation veaterx—x’, and for lo-
tion of a fluid partlcl_e IS the Lagrang|a_n_accelerat|on denote ally isotropic turbulence, the tensors’ associated scalar func-
by Du; /Dt, Wher_et is time and _subscrlptdeno_tes t_he COM-  tions depend only on the spacing=|r|. The preferred
ponent of velocity. Fluid-particle acceleration is anothercqordinate system is the Cartesian coordinate system having
name for Lagrangian acceleration. The Navier-Stokes equgs 1-axis aligned along the separation vedfofransverse

tion relates the Lagrangian acceleration to the accelerationssmponents are denoted by Greek subscripts sucl, #

caused by the pressure gradient and viscous fdR:d andy; that is,a, B, andy are 2 and 3, and they can be equal
b 1 unless otherwise specified. No summation is implied by re-
bui _ - 2 peated Greek subscripts. For our purposes, the Reynolds
Dt Uit U= PHvViu;, @ umber is defined by Re l+(u2)Y% v, where Taylor's scale

is defined bylt=((u$))/[{(d1u1)?)]¥2 The traditional no-
whered, andd; denote partial differentiation with respect to tation A for Taylor's scale and its use as a subscript on Re is
time and spatial position componert, respectively, and avoided because Greek subscripts have another meaning
V2= 4,0y is the Laplacian operator. Repeated Roman indicegere.

imply summation. From Eq1), it follows that the two-point The correlation of fluid-particle acceleration has been
spatial correlation of Lagrangian acceleration is given bystudied by Batchelof5] and Obukhov and Yaglori3,6].
[3,4] They showed that for large Reynolds numbers the contribu-
tion of the viscous acceleration is very small compared with
Duj) (Duj}"\ 1 I PI P4 V2T 2! that of the pressure gradient. Batchdlb} gave the quanti-
Dt/ Dt) | p2< POPT)FvAVAY ), tative estimate that the correlation of the viscous term con-

(2)  tributes only 2% of the acceleration correlation at zero spac-
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ing and for large Réa Reynolds number of 200 is large for o1

his purposes; cf. Fig. 3 of Reff5]); his estimate was based Dp(r)= ;z((P— P')?). 3

on the assumption that velocities at two points have the joint

Gaussian probability distribution. Deviations of pressure sta-

tistics from the formulas based on the joint Gaussian asThe following second-, third-, and fourth-order velocity
sumption have been obtained from numerical simulation oftructure functions are also needed:

turbulence for low R€7,8]. On the basis of the postulates

(but without use of the joint Gaussian assumptighe pres- Di;(N=((uj—u})(u;—u))), (4a)
sure structure function and pressure-gradient correlation have

recently been related to the fourth-order velocity structure

function [9]. It was thereby shown that the estimates of the Dijk(F)E<(ui—ui’)(uj—uj’)(uk—um, (4b)
pressure-gradient correlation based on the joint Gaussian as-

sumption were underestimates, and that the underestimate R , , , ,

worsens with increasing Re such that for values of Re typi- Dijia (N =((Ui—ui) (U= up) (U= ) (U —up)). (40
cally observed in the atmospheric surface lagiee in the

range of several thousandshe underestimate was about a These tensors are symmetric under interchange of every pair
factor of 4[9]. For the data shown here, R@08, and the ot jndices. Assuming local isotropy, these tensfEgs.
underestimate from the joint Gaussian assumption is showma)_(4c)] obey the specific “isotropic” formulag13.69,

to be about a factor of 3. Obukhov and Yagl$&] showed (13.80, and(13.81 of Monin and Yaglon{4]. For instance,

that for increasing the viscous acceleration correlation be-a general locally isotropic second-order tens’ﬁ[(F) is
comes progressively smaller relative to the pressure-gradie@ﬁven by[4]

acceleration correlation. Therefore, the viscous acceleration
correlation is only about one-thirfor Re=208 of Batch-
elor's[5] estimate of 2% of the total acceleration correlation - rir;
at r=0 and becomes progressively smaller, relative to the Tij(r):[Tll(r)_Tyy(r)]rTj+T7y(r)5ij , )
total, with increasing and Re.
Referring to Eq.(1), Monin and Yaglom[4] named the o
term 4,u; the “local acceleration” and named,d,u; the whereT,4(r) andT,,(r) are the Iongltudlnal and transverse
“inertial acceleration.” Lin[10] studied the auto- and cross- components of the tensor, respectively, afdis the Kro-
covariances of all four acceleration terms in H@). He necker dglta. For Iocally |sotrc_:p|c turbulenpe, .the L_agrang|an
found that the mean-squared pressure gradient was small@fceleration correlation and its two contributions in E2).
than the mean-squared inertial acceleration by a factor d?Pey Eq.(5), as doeD;;(r). Also, Djj(r) can be expressed
order Re! and that the mean-squared viscous acceleratiof? terms of its nonzero componenis,;(r) and D,,,(r),
was even smaller. Therefore, the local and inertial accelera¥hich are related by the incompressibility conditiH
tions are much larger than the right-hand side of @y.they
nearly cancel each other, and they cancel more completely as 1
Re increases. The total nonlinear term in the Navier-Stokes Dy,,(r)= g[rDlﬂ(r)](l). (6)
equation, i.e., the sum of inertial and pressure-gradient accel-
erations, is therefore dominated by the inertial acceleration.
The total nonlinear term has been studied by means of nuFhe superscript in parentheses indicates the order of differ-
merical simulation of turbulenc¢l1], and its deviations entiation with respect to. Also, Dijkl(F) can be expressed in
from the predictions of the joint Gaussian assumption wergerms of its nonzero componeni,;,(r), D gppp(r), and
given in Ref.[11]. D11,,(r), and the other nonzero compones,,,(r) with
Munch and Wheeloi12] used the Navier-Stokes equa- #1y, are related toDgggs(r) by the isotropy condition
tion to study the Eulerian velocity correlation time. In so 3D ey (1) =D gppp(r) [4].
doing, they demonstrated that advection of small-scale struc-
ture by the large-scale motion dominates the mean-squared
local acceleration. This effect has more recently been called Il. ACCELERATION CORRELATION
“random sweeping.” Tennekelsl3] used random sweeping BY THE PRESSURE GRADIENT

to obtain that the mean-squared Lagrangian acceleration is The bressure-aradient contribution to the Lagrandian ac-
Re ! times the mean-squared local acceleration; this is P 9 grang

equivalent to Lin’s[10] result. Tennekefl3] expressed the celeration correlation in Eq2) can be expressed 8]

random sweeping hypothesis in his first equation, which is

Ui+ udu;=0; that is, the right-hand side of Eql) is .1 1

neglected. Thus, the pressure-gradient and viscous accelera- Ajj(r)= ?@ipﬂf P")=5Dp(r)j - (7)

tions produce deviations from the random sweeping hypoth-

esis. The importance of pressure-gradient and viscous accel-

erations to Taylor's hypothesis of frozen flow has beenThe subscript vertical bar followed by indices indicates dif-

assessed in Reffl0] and[14]. ferentiation with respect to the components 0On the basis
The pressure structure function is needed in subsequenf the postulates, the relationship betwe&p(r) and

sections; it is defined by Djjui(r) gives[9]
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+— -3rp +D FIG. 1. The acceleration correlation caused by the pressure gra-
3Jr Y IP1udy) Bﬁﬁﬁ(y) dient. Ay4(r) and A,,(r) are the solid and dashed curves, respec-
tively. No value is graphed at=0. The Kolmogorov microscale
—6D1104(y) ]dy. (8b) was 0.31 mm for this and subsequent figures.

T.he appearance of subscriptsg, andy in Eq. (Sa) e.mph"’?' values and therefore have at least 2 extrédf. The ex-
sizes that use of 2 or 3 for any of these subscripts is arb'tra%erimental evaluation shown in Fig. 1 demonstrates that
For r=0, both components arg/3, where) is the mean- A;4(r) does indeed have a minimum where it is negative.

squared pressure gradient given[Sy That is, the acceleration components along the separation
1 w vector typically have opposite signs for thosgor which
XE—2(|&iP|2>=4f r3[D1114r) +Dggpp(r) A44(r) is negative. Consider the collision of oppositely di-
p 0 rected jets. The acceleration is away from the stall point

—6D d 9 along the direction of collision and also away from the stall
ll‘y‘y(r)] r. ( ) . . . . . f .
point in the directions transverse to the direction of collision.

Of course,A;;(F) has the isotropic formuldS), and is Such oppositely directed accelerations make it clear that

therefore described in terms of two scalar functions that ar@egative values ohy,(r) are expected. In Fig. 1, the mini-
taken to beA;;(r) andA.(r). Because the curl of the gra- Mum value 0fA(r) is about—25 n s~ the square root of
dient is zero, the curl oA;; () vanishegoperating on either the magnitude of which gives relative acceleration of about

index); consequently, the two scalar functions are related byn-half that of the acceleration of gravity, The minimum
[Eq. (12.70 of Ref.[4]] occurs at spacings of 5-6 mm and corresponds cabout

16-19, wherep is Kolmogorov’'s microscale. The slight os-
All(f):Ayy(r)+fA£yly)(r)- (10 cillations inA44(r) at the larger values shown in Fig. 1 are
caused by the limited number of data averaged combined
Thus, A;j(r) is described by a single scalar function. Equa-with the cancellations of some of the terms in Egp). Thus,
tions (8a) and (8b) satisfy Eq.(10). these oscillations are an artifact that would be removed if
The wind-tunnel grid-turbulence velocity data are de-much more data were averaged.
scribed in the Appendix. The fourth-order structure functions In the inertial range, botA,(r) andA,,(r) are positive
were calculated from the data and substituted into B8@. and have approximate 2/3 power lawq3,9]. Thus, for an
and(8b). The resulting acceleration correlations are shown irinertial range A;4(r) must cross zero to become positive at
Fig. 1. The single measured transverse velocity component gome value of [9]. The data do not have an inertial range
assigned the subscript 2. The data do not have sufficiertsee the Appendjx so we do not require another zero cross-
spatial resolution to determing from Eq. (9). In fact, the ing of Aj4(r) to appear at large in Fig. 1.
values shown in Fig. 1 at<2 mm should be interpreted with From the assumption of joint Gaussian velocities, the
caution because of the limited spatial resolutisee the Ap-  pressure-gradient contribution to acceleration correlation is
pendix. The values at =0 are therefore not graphed in Fig. [16]
1. Forr=0, it is easiest to evaluate E(R) rather than Egs.

(88 and (8b) from which x/3 is the value ofA;4(0) and 6 (Dot

A,(0). Aw(r)=f y [Di1(y)]=dy, (118
The monotonic decrease éf,(r) in Fig. 1 is expected '

[9] on the basis of the monotonic increaseDdf)(r). Equa-

tion (10) requires tha\;,(r) have both positive and negative AYS(r)=A%(r) —[D§7 ()% (11b
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PO L — the divergence of Eq(12), operating on either index, van-
m?s4) | i ishes because of incompressibility such thmj(F)“
60 | i =D;;(r);=0, and thereforeV;;(r);=V;;(r);;=0. That is,

: 1 D;;(r) andV;;(r) are both solenoidal such that their compo-
nents are related bi]

(r

JG
22

r
A V(1) = Va1 +5 VT (1); (13
]
the analogous relationship between,(r) and D, (r) is
US_ well known[4]. Now, Eq.(13) requires thav/,,(r) has both
~ positive and negative values and therefore has at least 2 ex-

trema at finiter [15].

On the basis of the postulates, Obukhov and Yag[8in
used Eq(12) to derive the viscous acceleration correlation in
terms of D4(r). Unfortunately, substituting data into their

—-10 b b formula is not useful for two reasons. First, that formula
0.00 0.08 002 003 0.04 005 requires derivatives of first through fifth order®f(r) with
r (m) respect tor, or derivatives of up to fourth order if both

D,o(r) andDq4(r) appear in the formula. Second, their re-
FIG. 2. The acceleration correlation caused by the pressure grault vanishes when the asymptotic viscous-range formula,

dient for the assumption of joint Gaussian velocities}f(r) and Dll(r)ocrz, is substituted into their formula; this implies
AZ3(r) are the solid and dashed curves, respectively. No value igreat cancellation of terms in the formula forwithin the
graphed at =0. viscous range, whereas the viscous range is the most signifi-

cant range for viscous acceleration correlation. Indeed, the
The superscript JG indicates that the formula requires theecond property is the reason that fourth-order derivative
assumption of joint Gaussian velocities in addition to requir-moments appear in the formulas for the mean-squared vis-
ing the postulates. Equatiois1a and(11b are much sim-  cous acceleration given by Batche[&] and Yaglom[6].
pler than the corresponding formulas in Rf] because in- Therefore, another formula is sought that does not have
tegration by parts was not used to simplify the results of Refthese properties. Monifil7] was the first to obtain, on the

[3]. For comparison with the results in Fig. 1, Eg1a and  pasis of the postulates, that
(11b are evaluated using the data, and the pressure-

gradient’s acceleration correlation is shown in Fig. 2. Results . 4 -

in Fig. 2 appear to be similar to those in Fig. 1. However, Dijk(r)\k+§e5ij:ZVDii(r)\kk (14

note that the scale of the ordinate in Fig. 2 is about one-third

that of Fig. 1. That is, the joint Gaussian velocities assumpfcf. Eq. (22.15 in Ref.[4]], from which follows Kolmogor-

tion underestimates the acceleration correlation for the sutev’s equation4,17,14

ject data by about a factor of 3. Such an underestimate was

anticipated[9]. The minimum of Aj(r) in Fig. 2 is at

slightly greater than in Fig. 1, and the minimum value of

AIY(r) is almost one-fifth that of(r). _ S _
One can express the acceleration correlations in terms d¥heree is the rate of dissipation of turbulent energy per unit

spectra. Substituting the relationshi8a) and (8b), i.e., ~Mass of fluid. Applying the Laplacian operator to Ed4)

g a2 IoE 0 anaade) RO, o a9

an of Ref.[9], one immediately relates the Fourier A 2

transforms ofA,(r) and A;y(r) to the pressure spectrum. Dijk(Djknn= 27D (1) ik (16

The pressure spectrum is, in turn, related to the fourth-ordegpstituting Eq(16) into Eq. (12) gives

velocity structure functionicf. Eq. (16) of Ref.[9]].

4 (1)
D111(r)=_§€r+6VD11("), (15

- v -
lll. ACCELERATION BY THE VISCOUS FORCE Vii(1)= = ZDi(Denn- (a7
The fOI’mula fOI’ the ViSCOUS acceleration Correlation iSThe |Ongitudina| and transverse Components of the ViSCOUS
[3.4] acceleration correlation are obtained by substitution of the
5 isotropic formula forDijk(F) and use of incompressibility
v [Eq. (6)], as follows:

Vij(F)EVZWZUiV’zUj,):_?Dij(F)\nnkk- (12

14
The repeated Roman subscripts following the vertical bar Vi1 =3 73D1ul1) 13D 1pp(r)
mean that the Laplacian operator with respect wperates
twice on the right-hand side of Eq12). Of course,V;;(r)

5 1
_ - p _ N2
obeys the isotropic formuléb), as doeD;;(r). In addition, rleﬁﬁ(r) r Dgp(r) |, (183
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14 1 2 1 (1) 2.5 T T T T T T
Vll(r)zz _r_gD111(r)+F§D133(r)+r7D1ﬁg(r) m?s9 | ]
3 1 2.0 |- 1
— = DY7a(r) —5DYgs(r) . (18b i ]
E 15} s
Of course, Eq.(6) can be used to expresg,,(r) and Ny | i
V4(r) in terms of onlyD,;4(r); a one-order-higher deriva-
tive would then appear in these formulas, and more cancel- % 1.0 - }
lation among the terms would occur. Equatioii8a and - - ]
(18b) have been checked by determining that they agree with = 5 5 | i
the expression fov;;(0) given by Yaglon{6] and that they ~
produce the same inertial-range formula for viscous accelera- I ‘\ 1
tion correlation as can be obtained from the formulas in Ref. 0.0 |- \ L m e ===
[3]. Also, Egs.(183 and (18b) obey the incompressibility -~ i
condition[Eq. (13)]. o L ,
From Egs.(183 and(18b), the asymptotic viscous-range _0‘50.0 0.005 0.010 0.015
formulas are p (m)
V1x(0)=V,,(0)= —35v((33uy)?)/6, (19

FIG. 3. The acceleration correlation caused by the viscous force.
V34(r) andV,,(r) are the solid and dashed curves, respectively. No

which is the same as obtained by Yagl¢6i, who used a e is graphed at=0,

different method.

Derivation of the inertial-range formulas from Eq48a
and (18b) is given next. If the isotropic formula deijk(F)
and Kolmogorov’'s[18] inertial-range law, i.e.Dq4(r)= o 21003
—4er/5 andD ., (r) = —4er/15, are substituted on the left- V,,(r)=—1.84°Ce”¥ 1%, (21b
hand side of Eq(16), then the left-hand side of Eq16)
vanishes. The inertial-range law is thus the solution to thefhe —10/3 power law has been given by Obukhov and
corresponding homogeneous equatipre., replacing the Yaglom[3]. Since only the correction terms in Eq0a
right-hand side of Eq(16) with zerg|. Therefore, the correc- and(20b) contribute in Eqs(218 and(21b), it follows that if
tion to the inertial-range formula fdd,,4(r) can be found by one were to attempt to use data to calculatg(r) and
substituting the inertial-range formula fdb;;(r) on the V,,(r) in the inertial range, then one should use their rela-
right-hand side of Eq(16) and obtaining the particular solu- tionship to D44(r) given in Ref.[3] rather than use Egs.
tion of Eq. (16). It is simpler to substitute the inertial-range (188 and (18b). On the other hand, Eq$18a and (18h)
formula D14(r) = Ce?% 23 into Kolmogorov's equation, Eq. should be used for the viscous range for aforementioned rea-
(15), and solve foD44(r) to obtain sons.

The third-order structure functions were calculated from
Dyy(r)=—ter+4vCe?% ~PB=—ter[1-5C(r/5) "%,  the data and substituted into E¢$8a and(18b). The result
(20@  is shown in Fig. 3. The negative values\§,(r),which are
required on the basis of EQL3) [15], are evident in Fig. 3.
D1, (r)=—fser+5vCe?¥ Y= —fer[1-3C(r/7)*?],  Note that the scale of the abscissa in Fig. 3 is less than
(20b) one-third that of Figs. 1 and 2, and that the scale of the
ordinate in Fig. 3 is only about one-hundredth that of Fig. 1.
where Eq.(20b) follows from Eg. (208 on the basis of in- The evaluation shown in Fig. 3 clearly suffers from limited
compressibility[Eq. (6)]. Here, 7= (v%/€)** is Kolmogor-  spatial resolution of the data to a greater extent than the
ov’'s microscale, an€ is Kolmogorov's constant, which has pressure-gradient correlation in Fig. 1. Evaluation of @§)
the valueC=2 [19]. The resul{Eqs.(20a and(20b] gives  gives 2.7 ms * (see the Appendjx which is greater than
the correction to Kolmogorov's inertial-range law caused bythe values graphed in Fig. 3 at the minimum spacing of 1
viscous acceleration. The use €6f=2 in Egs. (208 and mm especially folA,,(r). This indicates that the derivatives
(20b) shows that the correction term is small compared to thén Eqgs.(1839 and(18h) are inaccurate at the smallest spacing
asymptotic power law for those/n for which Dq,(r) in Fig. 3 because of the limited spatial resolution of the data
=Ce???Ris accurate. Substituting Eq20a and(20b) into  and the coarseness of the sampling rate, especially when it is
Egs.(18a and(18b) gives the same result as can be obtainechecessary to calculate the third-order derivative, as in Eq.
by substituting the inertial-range formula fbr;(r) into the  (18h). The viscous acceleration correlation was also calcu-
formulas forV,4(r) andV,.(r) given in Ref.[3]; this fact lated fromD,44(r) alone; that is, by calculating the right-
validates Eqs(189 and (18b) and the correction terms in hand side of Eq(6) and using it in place oD, 44(r) every-
Egs. (209 and(20b) because only the correction terms con-where in Eqs(183 and(18b). The result differed from Fig.
tribute toVq,(r) andV,,,(r). The inertial-range asymptotic 3 in only minor respects; notably, there were more oscilla-
formulas arise only from the correction terms in E¢&0g  tions at the larger caused by the higher order of differen-
and (20b) and are tiation.

Viy(r)=2.722Ce?% ~108 (213
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Fourier transformation of Eq$18a and (18b) followed  smaller, relative to the pressure-gradient contribution, for
by integration by parts and optional use of Ef), can be even greater Re. The assumption of joint Gaussian velocities
used to express the Fourier transforms \f.(r) and causes underestimation of the pressure-gradient correlation
V14(r) in terms of Fourier transforms related®n ;4(r) and by about a factor of 3 for the data considered, and the un-
Digp(r). Alternatively, the Fourier transforms of the rela- derestimate worsens with increasing Re.
tionships ofV,,,(r) andVy4(r) to D,4(r) as given in Ref[3]

can, after integration py parts, express Fhe Fourier transforms ACKNOWLEDGMENTS
of V,(r) and Viy(r) in terms of Fourier transforms that
involve Dq4(r). The authors thank W. T. Otto for assistance with the com-

putation. This work was partially supported by ONR Con-

tract No. N0O0014-93-F-0038.
IV. DISCUSSION

The contributions of the pressure gradient and the viscous APPENDIX
force to the fluid-particle acceleration correlation were evalu-
ated using velocity data. It appears that spatial resolution on Velocity data obtained from grid-generated turbulence in
the order of the Kolmogorov microscale is needed to bette® Wind tunnel were used to evaluate E¢fa), (8b), (11a,
obtain the acceleration caused by the viscous force. Achievl1b), (183, (18b), and(19). The data are described in Ref.
ing such fine spatial resolution requires considerable experl20]. An X-configuration hot-wire anemometer measured the
mental effort. About half that resolution is needed for theStreamwise velocity component, as well as one cross-stream
pressure-gradient correlation. Data that is sampled mor¥elocity component. These components are assigned the sub-
finely than the spatial resolution would be useful for imple-Scripts 1 and 2, respectively, i.¢8=y=2. The grid spacing
menting the derivatives. Much more data than that used hel¥@s 19 cm. The measurements were performed 4.7 m from
would improve the statistical reliability and thereby improve the grid, at which position the mean shear was zero. The
evaluation of the correlations. A motivation for this report is Mean velocity was 10.1 m$, the Kolmogorov microscalg
to encourage the design of experiments capable of evaluatigas 0.31 mm. Taylor's scale was 8.5 mm, the integral scale
the acceleration correlation. was 10.8 cnj20], and Re=208. The hot wires were 1.2 mm
The asymptotic formu'as foVII(F) in the ViSCOUS and |Ong, and the.Signa|S Wer-e filtered at 5 kHZ, SO the Spatial
inertial ranges are given in Eq&lL9), (20a, and (20b) and scale over which the velocity was averag_ed was about 1 mm.
for A;;(r) in Ref.[9]. The data employed cannot be used toThe data were sampled at 10 kHz, so using Taylor's hypoth-
verify either asymptote. For simplicity, the inertial-range €Sis ith the mean velocity of 10.1 m' the samples were
power laws are given without their modifications attributableSPaced 1 mm in the streamwise direction. Reduced credibil-
to intermittency, but the modification is obvious. ity must be given to the statistics at spacings less than about
All results are obtained solely on the basis of the postu2 Mm because of the spatial averaging. _
lates, with the exception, of course, of the inertial-range as- The statistical reliability of the structure functions was
ymptotic formulas[Egs. (20b), (213, and (21b] and the determmed b_y calculating joint probability d|§tr|_but|on_s and
comparison with results from the joint Gaussian assumptiongraphing the integrands that produce the statistics by integra-
Results based solely on the postulates are valid for arbitrarjjon of a function multiplying the joint probability distribu-
Re. In practice, as Re becomes small, the turbulence mu&@n. For instance, the integrand fBr;;o{r) at a givenr is
become homogeneous and isotropic in order that local homdd: —U1)*(u,—Uu3)? times the joint probability distribution
geneity and local isotropy remain accurate. Numerical simuof (u;—uj) and (u,—u5). There is no systematic underes-
lation of turbulence can be used to calculate both sides dimation of any of the statistics.
Egs.(8a) and(8b) and Eqs.(18a and(18b). As such, these The velocity structure functions were corrected for inac-
equations and related equations in Ré&fl can be used as curacy of Taylor's frozen-flow hypothesis using the algo-
measures of how well the simulation obeys the postulategithms in Ref.[21]. Those algorithms include corrections for
Equations(8a) and (8b) and related equations in R¢f] do  second-, third-, and fourth-order structure functions. Unno-
not depend on the viscosity term; thus, these equations at&eable changes in the figures results from using corrected
satisfied when hyperviscosity is used in a numerical simulaversus uncorrected structure functions.
tion, as in Ref[2]. The velocity covariances wer&u;)?)=0.135 nfs 2,
Figure 1 shows that the transverse component caused Kyu,)?)=0.119 nfs? and (u,u,)=—0.0036 nis?
the pressure gradient, i.é,,,(r), is monotonically decreas- which show that the turbulence was nearly isotropic. The
ing, as expected, and that the longitudinal component, i.enumerators of the ratioB 15(r)/D14(r), D1114r)/D1114r),
A11(r), has a minimum where it is negative. The latter im-and D15oAr)/D4114(r) should be zero in isotropic turbu-
plies that accelerations at the two points are, in the rootlence. These ratios were within 2% of zero fer10 cm with
mean-squared sense, toward and away from each other where exception of a rapid decrease fer0.3 cm, presumably
projected on the separation vectorThe maximum contri- caused by spatial averaging and the separation of the two
butions to the acceleration correlation are a0, where, for  wires in theX-wire probe.
the data considered, the pressure gradient contributes a value The power spectra of both velocity components have
in excess of 175 fs # (thus, the root-mean-squared accel- power laws extending over about a decade in wave number
eration exceeds 1.4) @nd the viscous force contributes 2.7 [20], but the power-law exponents are noticeably shallower
m?s 4. At all r, the viscous-force contribution is small com- than —5/3; they are about-5/3+0.19. This deviation from
pared with that of the pressure gradient, and it is even—5/3 is expected for the Reynolds number of 208 in com-
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parison with slopes of velocity spectra collected in the fifthof the integrand with increasing the integral is insensitive
figure of Ref.[22], and in comparison with the dissipation to the choice of the upper limit. Similar considerations estab-
range bump observed in velocity spectra at higher Reynoldkish 20 cm as the appropriate upper limit for use in EG4a
numberg1,23-25 and predicted theoreticallj26,27]. and(11b).

A finite value must be chosen for the upper limit of the  For r=1 mm, i.e.,, the minimum spacing, the ratio
integral in Eq.(8a). The integrand in Eq(8a), as evaluated Dqq4(r)/[D14(r)]¥? was —0.4, which agrees with the value
using the data, decreases in a nearly power-law manner yf velocity-derivative skewness given for the same data in
more than 3 decreases fram5 mm to 9 cm; beyond 10 cm, Ref. [20]. This value was used with E¢19) and the mea-
the integrand becomes statistically unreliable. The uppesured energy dissipation rate to obtain,(0)=V,.(0)
limit was chosen to be 10 cm. Because of the rapid decrease2.7 nf s *.
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